23 research outputs found

    COMPARISON OF SKINFOLD AND BIOELECTRICAL IMPEDANCE ANALYSIS WITH DUAL-ENERGY X-RAY ABSORPTIOMETRY FOR BODY COMPOSITION ANALYSIS IN COLLEGE STUDENTS

    Get PDF
    Dual-energy x-ray absorptiometry (DXA) can provide precise measurement of soft tissue composition with minimal radiation exposure. However, having access to DXA is very costly and limited, and other noninvasive and more accessible techniques such as bioelectrical impedance analysis (BIA) and skinfold measurements are commonly used by clinicians. The purpose of this study was to compare body composition examined with BIA and 3-sites skinfold analysis to the results examined with DXA, and develop body fat prediction equations for BIA and skinfold measurements, using DXA data as the criterion Design: Cross sectional. Subjects: Sixty three college age students (28 male, 35 female) aged 18 to 27 participated in the study. Results: Body fat percentage measured with DXA is significantly higher than those measured with skinfold (p = .01) and BIA (p = .01). However, body fat percentage measured with DXA is highly correlated with those measured with skinfold (r = .895; p = .01) and BIA (r = .875; p = .01). The DXA criterion regression equations were created for skinfold and BIA: DXA%BF=4.65 + 0.43 * S3SF (sum of 3 site skinfold); DXA%BF=3.79 + 1.09 * BIA%BF. The new regression equations were further validated using 75/25% subjects cross validation. Conclusion: Skinfold and BIA measurements significantly underestimate body fat percentage compared to DXA in healthy college students. Adjustments are necessary to accurately predict body fat percentage when using skinfold or BIA at a clinical setting. To accommodate the higher body fat percentage measured with the gold standard such as DXA, the results from this study suggest the need for the current %BF standards and norms for healthy young adults to be adjusted upward

    A kk-medoids Approach to Exploring Districting Plans

    Full text link
    Researchers and legislators alike continue the search for methods of drawing fair districting plans. A districting plan is a partition of a state's subdivisions (e.g. counties, voting precincts, etc.). By modeling these districting plans as graphs, they are easier to create, store, and operate on. Since graph partitioning with balancing populations is a computationally intractable (NP-hard) problem most attempts to solve them use heuristic methods. In this paper, we present a variant on the kk-medoids algorithm where, given a set of initial medoids, we find a partition of the graph's vertices to admit a districting plan. We first use the kk-medoids process to find an initial districting plan, then use local search strategies to fine-tune the results, such as reducing population imbalances between districts. We also experiment with coarsening the graph to work with fewer vertices. The algorithm is tested on Iowa and Florida using 2010 census data to evaluate the effectiveness.Comment: 25 pages, 7 figures, and 6 table

    MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9–25°E) : major element chemistry and the importance of process versus source

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q05004, doi:10.1029/2008GC001959.We report highly variable mid-ocean ridge basalt (MORB) major element and water concentrations from a single 1050-km first-order spreading segment on the ultraslow spreading Southwest Indian Ridge, consisting of two supersegments with strikingly different spreading geometry and ridge morphology. To the east, the 630 km long orthogonal supersegment (<10° obliquity) dominantly erupts normal MORB with progressive K/Ti enrichment from east to west. To the west is the 400 km long oblique supersegment (up to 56° obliquity) with two robust volcanic centers erupting enriched MORB and three intervening amagmatic accretionary segments erupting both N-MORB and E-MORB. The systematic nature of the orthogonal supersegments' ridge morphology and MORB composition ends at 16°E, where ridge physiography, lithologic abundance, crustal structure, and basalt chemistry all change dramatically. We attribute this discontinuity and the contrasting characteristics of the supersegments to localized differences in the upper mantle thermal structure brought on by variable spreading geometry. The influence of these differences on the erupted composition of MORB appears to be more significant at ultraslow spreading rates where the overall degree of melting is lower. In contrast to the moderate and rather constant degrees of partial melting along the orthogonal supersegment, suppression of mantle melting on the oblique supersegment due to thickened lithosphere means that the bulk source is not uniformly sampled, as is the former. On the oblique supersegment, more abundant mafic lithologies melt deeper thereby dominating the more enriched aggregate melt composition. While much of the local major element heterogeneity can be explained by polybaric fractional crystallization with variable H2O contents, elevated K2O and K/Ti cannot. On the basis of the chemical and tectonic relationship of these enriched and depleted basalts, their occurrence requires a multilithology mantle source. The diversity and distribution of MORB compositions, especially here at ultraslow spreading rates, is controlled not only by the heterogeneity of the underlying mantle, but also more directly by the local thermal structure of the lithosphere (i.e., spreading geometry) and its influence on melting processes. Thus at ultraslow spreading rates, process rather than source may be the principle determiner of MORB composition.This work was originally funded in large part by NSF grants OCE-9907630 and OCE-0526905 and more recently by OPP-0425785

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Synthesis of the diaryl ether cores common to chrysophaentins A, E and F.

    No full text
    The synthesis of the diaryl ether subunits of the marine natural products chrysophaentin A, E and F is described. These natural prodcuts feature tetrasubstituted benzene rings with complex substitution patterns. The central strategy involves an SNAr reaction between a complex phenol and a polysubstituted fluoronitrobenzene. Subseqent attempts to construct the unusual E-chloroalkene linkage through several different approaches are also disclosed

    Synthesis of 6,6′-Binaphthopyran-2-one Natural Products: Pigmentosin A, Talaroderxines A and B

    No full text
    Efficient and stereoselective syntheses of pigmentosin A, talaroderxine A, and its diastereomer talaroderxine B are reported. The binaphthyl ring system is assembled by vanadium-catalyzed phenolic coupling of tricyclic precursors. These key intermediates were prepared by Michael–Dieckmann annulation of a protected orsellinate ester, with the requisite pyranones accessed by a new variant of Ghosez’s sulfone-epoxide annulation. Preliminary biological experiments are reported for pigmentosin

    Cholesterol sensing by CD81 is important for hepatitis C virus entry

    Get PDF
    CD81 plays a role in a variety of physiological and pathological processes. Recent structural analysis of CD81 indicates that it contains an intramembrane cholesterol-binding pocket and that interaction with cholesterol may regulate a conformational switch in the extracellular domain of CD81. Therefore, CD81 possesses a potential cholesterol sensing mechanism; however, its relevance for protein function is thus far unknown. In this study we investigate CD81 cholesterol sensing in the context of its activity as a receptor for hepatitis C virus. Structure-led mutagenesis of the cholesterol-binding pocket reduced CD81-cholesterol association, but had disparate effects on HCV, both reducing and enhancing CD81 receptor activity. We reasoned that this could be explained by alterations in the consequences of cholesterol binding. To investigate this further we performed molecular dynamic simulations of CD81 with and without cholesterol; this identified an allosteric mechanism by which cholesterol binding regulates the conformation of CD81. To test this, we designed further mutations to force CD81 into either the open (cholesterol unbound) or closed (cholesterol bound) conformation. The open mutant of CD81 exhibited reduced receptor activity whereas the closed mutant was enhanced. These data are consistent with cholesterol switching CD81 between a receptor active and inactive state. CD81 interactome analysis also suggests that conformational switching may modulate the assembly of CD81-partner networks. This work furthers our understanding of the molecular mechanism of CD81 cholesterol sensing, how this relates to HCV entry and CD81's function as a molecular scaffold; these insights are relevant to CD81's varied roles in health and disease

    Cholesterol sensing by CD81 is important for hepatitis C virus entry

    Get PDF
    CD81 plays a central role in a variety of physiological and pathological processes. Recent structural analysis of CD81 indicates that it contains an intramembrane cholesterol-binding pocket and that interaction with cholesterol may regulate a conformational switch in the large extracellular domain of CD81. Therefore, CD81 possesses a potential cholesterol-sensing mechanism; however, its relevance for protein function is thus far unknown. In this study we investigate CD81 cholesterol sensing in the context of its activity as a receptor for hepatitis C virus (HCV). Structure-led mutagenesis of the cholesterol-binding pocket reduced CD81–cholesterol association but had disparate effects on HCV entry, both reducing and enhancing CD81 receptor activity. We reasoned that this could be explained by alterations in the consequences of cholesterol binding. To investigate this further we performed molecular dynamic simulations of CD81 with and without cholesterol; this identified a potential allosteric mechanism by which cholesterol binding regulates the conformation of CD81. To test this, we designed further mutations to force CD81 into either the open (cholesterol-unbound) or closed (cholesterol-bound) conformation. The open mutant of CD81 exhibited reduced HCV receptor activity, whereas the closed mutant enhanced activity. These data are consistent with cholesterol sensing switching CD81 between a receptor active and inactive state. CD81 interactome analysis also suggests that conformational switching may modulate the assembly of CD81–partner protein networks. This work furthers our understanding of the molecular mechanism of CD81 cholesterol sensing, how this relates to HCV entry, and CD81's function as a molecular scaffold; these insights are relevant to CD81's varied roles in both health and disease

    Comparison of Small Molecule Inhibitors of the Bacterial Cell Division Protein FtsZ and Identification of a Reliable Cross-Species Inhibitor

    No full text
    FtsZ is a guanosine triphosphatase (GTPase) that mediates cytokinesis in bacteria. FtsZ is homologous in structure to eukaryotic tubulin and polymerizes in a similar head-to-tail fashion. The study of tubulin’s function in eukaryotic cells has benefited greatly from specific and potent small molecule inhibitors, including colchicine and taxol. Although many small molecule inhibitors of FtsZ have been reported, none has emerged as a generally useful probe for modulating bacterial cell division. With the goal of establishing a useful and reliable small molecule inhibitor of FtsZ, a broad biochemical cross-comparison of reported FtsZ inhibitors was undertaken. Several of these molecules, including phenolic natural products, are unselective inhibitors that seem to derive their activity from the formation of microscopic colloids or aggregates. Other compounds, including the natural product viriditoxin and the drug development candidate PC190723, exhibit no inhibition of GTPase activity using protocols in this work or under published conditions. Of the compounds studied, only zantrin Z3 exhibits good levels of inhibition, maintains activity under conditions that disrupt small molecule aggregates, and provides a platform for exploration of structure–activity relationships (SAR). Preliminary SAR studies have identified slight modifications to the two side chains of this structure that modulate the inhibitory activity of zantrin Z3. Collectively, these studies will help focus future investigations toward the establishment of probes for FtsZ that fill the roles of colchicine and taxol in studies of tubulin
    corecore